

Revision: 01/04/2024

Page 1 of 8

lechnical Data											
Base	Vinylester styrene	free									
Consistency	Stable paste										
Curing system	Chemical reaction										
Processing time and curing time on dry substrate On wet substrate = time x 2 Cartridge temperature between -20°C and +10°C	<u>Temperature</u> ≥ -20°C ≥ -15°C ≥ -10°C ≥ -5°C ≥ 0°C ≥ +5°C ≥ +10°C	<u>Start</u> 75 min 55 min 35 min 20 min 10 min 6 min 6 min	Full cure 24 h 16 h 10 h 5 h 2.5 h 80 min 60 min								
Specific Gravity	1,77 g/cm ³										
Temperature Resistance	-40°C to +120°C										
Elasticity modulus	14000 N/mm ²										
Maximum bending strength	15 N/mm ²										
Maximum compression strength	100 N/mm ²										

Description:

SOUDAFIX VE400-SF ARCTIC is a twocomponent anchoring resin for the pressure-free securing of threaded rods (ETA: M8-M30), studs, reinforcement bars (ETA: Ø8-Ø32), threaded collars, profiles etc in various solid and hollow materials, such as cracked and uncracked concrete, solid brick, hollow brick, porous concrete, natural stone (see remarks), plasterboard walls, etc...

Properties:

- Good and easy to process
- Easy to use and to apply
- Fast cure
- Wide application area, even in wet drill holes, under water (also sea water) and at temperature as low as -10°C
- Overhead installation allowed
- Styrene free (low odour)
- Cartridge re-usable by simply exchanging static mixer
- Watertight and impermeable fixing
- High chemical resistance (chlorinated pool water and sea water)

- European Technical Assessment ETA 10/0167 based on EAD 330499-02-0601-0601 for application in cracked and uncracked concrete.
- European Technical Assessment ETA 21/0170 based on EAD 330076-01-0604 for application in masonry.

Application area:

Securing of heavy loads in solid and hollow building materials. Pressure free anchoring even close to edges. Can be used as repair mortar.

Packaging:

Colour: dark grey after mixing Cartridge: 300 ml foil bag cartridge for standard skeleton gun.

Shelf life and Storage:

18 months in original packaging. Store at cool and dry place at temperatures between -20°C and +25°C.

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Soudal India Pvt. Ltd. Plot No. 200, Sec. 4, Phase - II, Growth Centre, Bawal, Dist. Rewari, Haryana - 123501 (India) info@soudal.in | www.soudal.in | +91 8010-114-114

Revision: 01/04/2024

Substrates:

Type: All usual porous building substrates, poor adhesion on smooth non-porous materials. State: Clean, free of dust and grease.

Application:

Application method: standard skeleton gun for 280 ml cartridge, preferably heavy duty. Do not use a compressed air gun.

Application temperature: -20°C to +10°C Clean: Before cure: wipe off excess of product and clean afterwards with white spirit or acetone.

After cure: it is recommended to let the product fully cure, so that it can easily be removed mechanically with hammer and chisel.

Repair: with the same material

Safety recommendations:

Apply the usual industrial hygiene precautions. Only use in well-ventilated spaces. Consult the label for more information.

Remarks:

The salt in seawater does not adversely affect the chemical curing reaction. Use in seawater is not covered by the ETA certificate because there is no EAD (European Assessment Document) test procedure for seawater applications. There is a risk of staining on porous substrates such as natural stone.

Instructions for use:

- Drill hole to recommended depth.
- Clean the drilled hole by successive blowing out, brushing and blowing out (4x each time).
- Open the foil packaging and screw static mixing nozzle onto the cartridge.
- Dispense the first 10 cm of the product to waste (on piece of cardboard) until an even colour (dark grey) is achieved, and the product is well mixed.
- Mark embedment depth on the anchor rod. The anchor rod shall be free of dirt, grease or other foreign material.
- Solid stone: fill the drill hole from bottom up. Hollow brick: insert sleeve and fill it bottom up, so that the resin is pressed through the tiny holes of the sleeve.
- Apply anchor rod clockwise.
- Inspect the drill hole for adequate filling.
- Observe hardening time. Don't move the anchoring rod during curing.
- Leave the excess of product to cure as well. Remove it mechanically with hammer and chisel once cured.
- Install component, applying the right torque.

Remark: The directives contained in this documentation are the result of our experiments and of our experience and have been submitted in good faith. Because of the diversity of the materials and substrates and the great number of possible applications which are out of our control, we cannot accept any responsibility for the results obtained. In every case it is recommended to carry out preliminary experiments.

Page 2 of 8

Revision: 06/03/2024

Page 3 of 8

Installation parameters threaded rods:

Diameter threaded rod	d	mm	M8	M10	M12	M16	M20	M24	M27	M30
Drill diameter	d ₀	mm	10	12	14	18	22	28	30	35
Min. anchorage depth	h _{ef,min}	mm	60	60	70	80	90	96	108	120
Max. anchorage depth	h _{ef,max}	mm	160	200	240	320	400	480	540	600
Min. edge distance	Cmin	mm	40	50	60	80	100	120	135	150
Min. axial distance	Smin	mm	40	50	60	80	100	120	135	150
Tightening torque	Tinst	Nm	10	20	40	60	100	170	250	300

Installation parameters reinforcement bars:

Diameter reinforcement bar	d	mm	Ø8	Ø 10	Ø 12	Ø14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Drill diameter	d ₀	mm	10 or	12 or	14 or	18	20	25	32	35	40
			12	14	16						
Min. anchorage depth	h _{ef,min}	mm	60	60	70	75	80	90	100	112	128
Max. anchorage depth	h _{ef,max}	mm	160	200	240	280	320	400	500	560	640
Min. edge distance	C _{min}	mm	40	50	60	70	80	100	125	140	160
Min. axial distance	S _{min}	mm	40	50	60	70	80	100	125	140	160

REVISION: U0/U3/2U24										_
Tabel C1: Characteristic values for s	steel tensi	on and s	shearo	of threa	ded ro	ds				1
Diameter threaded rods			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic values for tension, steel failure		-								
Characteristic tensile strength, steel class 4.6 en 4.8	N _{Rķs}	kN	15	23	34	63	98	141	184	224
Characteristic tensile strength, steel class 5.6 en 5.8	N _{Rķs}	kN	18	29	42	78	122	176	230	280
Characteristic tensile strength, steel class 8.8	N _{Rks}	kN	29	46	67	125	196	282	368	449
Characteristic tensile strength, stainless steel A2, A4 and HCR class 50	N _{Rks}	kN	18	29	42	79	123	177	230	281
Characteristic tensile strength, stainless steel A2, A4 and HCR class 70	N _{Rks}	kN	26	41	59	110	171	247	-	-
Characteristic tensile strength, stainless steel A4 and HCR class 80	N _{Rks}	kN	29	46	67	126	196	282	-	-
Characteristic values for tension, partial factor										
Partial factor steel class 4.6	¥ _{Ms,N} 1)					2	.0			
Partial factor steel class 4.8	¥ _{Ms,N} 1)					1	.5			
Partial factor steel class 5.6	Y _{Ms,N} ¹⁾					2	.0			
Partial factor steel class 5.8	¥Ms,N ¹⁾					1	.5			
Partial factor steel class 8.8	¥ _{Ms,N} ¹⁾					1	.5			
Partial factor stainless steel A2, A4 and HCR class 50	¥ _{Ms,N} ¹⁾					2.	86			
Partial factor stainless steel A2, A4 and HCR class 70	¥Ms,N ¹⁾	1.87								
Partial factor stainless steel A4 and HCR class 80	¥Ms,N ¹⁾	¥Ms,N ¹⁾								
Characteristic shear resistance, steel failure			-							
Steel failure without lever arm										
Characteristic shear resistance, steel class 4.6 and 4.8	V ⁰ _{Rks}	kN	9	14	20	38	59	85	110	135
Characteristic shear resistance, steel class 5.6 and 5.8	V⁰ _{Rks}	kN	11	17	25	47	74	106	138	140
Characteristic shear resistance, steel class 8.8	V ⁰ _{Rks}	kN	15	23	34	63	98	141	184	224
Characteristic shear resistance, stainless steel A2, A4 and HCR class 50	V ⁰ _{Rks}	kN	9	15	21	39	61	88	115	140
Characteristic shear resistance, stainless steel A2, A4 and HCR class 70	V ⁰ _{Rks}	kN	13	20	30	55	86	124	-	-
Characteristic shear resistance, stainless steel A4 and HCR class 80	V ⁰ _{Rks}	kN	15	23	34	63	98	141	-	-
Steel failure with lever arm										
Characteristic shear resistance, steel class 4.6 and 4.8	M ⁰ _{Rks}	kN	15	30	52	133	260	449	666	900
Characteristic shear resistance, steel class 5.6 and 5.8	M^0_{Rks}	kN	19	37	65	166	324	560	833	1123
Characteristic shear resistance, steel class 8.8	M ⁰ _{Rks}	kN	30	60	105	266	519	896	1333	1797
Characteristic shear resistance, stainless steel A2, A4 and HCR class 50	M ⁰ _{Rks}	kN	19	37	66	167	325	561	832	1125
Characteristic shear resistance, stainless steel A2, A4 and HCR class 70	M ⁰ _{Rks}	kN	26	52	92	232	454	784	-	-
Characteristic shear resistance, stainless steel A4 and HCR class 80	M^0_{Rks}	kN	30	59	105	266	519	896	-	-
Characteristic shear resistance, partial factor										
Partial factor steel class 4.6	Y _{Ms,V} ¹⁾					1.	67			
Partial factor steel class 4.8	¥ _{Ms,V} 1)					1.	25			
Partial factor steel class 5.6	Y _{Ms,V} ¹⁾					1.	67			
Partial factor steel class 5.8	$\gamma_{Ms,V}$ 1)					1.	25			
Partial factor steel class 8.8	Y _{Ms,V} ¹)					1.	25			
Partial factor stainless steel A2, A4 and HCR class 50	Y _{Ms,V} 1)					2.	38			
Partial factor stainless steel A2, A4 and HCR class 70	Y _{Ms,V} 1)		Ι			1.	56			
Partial factor stainless steel A4 and HCR class 80	Y _{Ms,V} 1)		Ι			1.	33			
1) In absence of national regulation	-		-							

Revision: 06/03/2024

Page 5 of 8

Revision: U	0/03/2024									гау	e 5 01 c				
	Table C3 Characte	ristic valu	es of tension	on loads u	nder statio	and quas	i-static act	tion							
Diameter threaded	l rod			M8	M10	M12	M16	M20	M24	M27	M30				
Characteristic values	s of tension loads, steel failure														
Characteristic tensio	on resistance	N _{Rks}	kN	$A_{s} * f_{uk}$ (or see table C1)											
Partial factor		¥Ms,N	-	See table C1											
Combined pull-out an	nd concrete failure														
Characteristic bond re	esistance in non-cracked concrete C20/25														
	Temperature range I: 40°C to 24°C	TRkucr	N/mm ²	10	12	12	12	12	11	10	9				
Dry and wet concrete	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	7.5	9	9	9	9	8.5	7.5	6.5				
	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	6.5	5.5	5.0				
	Temperature range I: 40°C tot 24°C	TRkucr	N/mm ²	7.5	8.5	8.5	8.5								
Flooded bore hole	Temperature range II: 80°C tot 50°C	TRkucr	N/mm ²	5.5	6.5	6.5	65	1	No performa	nce declare	d				
	Temperature range III: 120°C tot 72°C	TRkucr	N/mm ²	4.0	5.0	5.0	5.0								
Characteristic bond re	esistance in cracked concrete C20/25														
Dry and wet concrete	Temperature range I: 40°C to 24°C	TRkcr	N/mm ²	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5				
	Temperature range II: 80°C to 50°C	TRkcr	N/mm ²	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5				
	Temperature range III: 120°C to 72°C	TRkcr	N/mm ²	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5				
	Temperature range I: 40°C tot 24°C	TRkcr	N/mm ²	4,0	4,0	5,5	5,5								
Flooded bore hole	Temperature range II: 80°C tot 50°C	TRkcr	N/mm ²	2,5	3,0	4,0	4,0	No performance declared							
	Temperature range III: 120°C tot 72°C	TRkcr	N/mm ²	2,0	2,5	3,0	3,0								
Reduction factor Ψ^0_{sus}	in cracked and uncracked concrete C20/2	5													
Dry and wet concrete	Temperature range I: 40°C tot 24°C	Ψ^0_{sus}	-				0	,73							
and water-filled	Temperature range II: 80°C tot 50°C	Ψ^0_{sus}	-				0	,62							
borehole	Temperature range III: 120°C tot 72°C	Ψ^0_{sus}	-				0	,57							
Increasing factors for	concrete	Ψ	-	(f _{ck} / 20) ^{0,11}											
Characteristic bond re	esistence depending on concrete class	Trk,	ucr =				Ψ _c * Ţ _{Rķuc}	_{er} (C20/25)							
Characteristic bond re	esistance depending on concrete class	Trk	,cr =				Ψ _c * Ţ _{Rķc}	r (C20/25)							
Concrete conce failu	re														
Relevant parameter							See ETA	Table C2							
Concrete edge failure	e														
Relevant parameter	Relevant parameter			See ETA Table C2											
Installation factor (dry	and wet concrete)	Y	inst	1.0				1.2							
Installation factor (flooded bore hole)		Y	inst		1	,4		No performance declared							

Revision: 06/03/2024									Page	e 6 of 8	
Table C4: Characteristic v	alues of	shear lo	ads und	derstat	ic and (quasi-s	tatic ac	tion			
Diameter threaded rod			M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm											
Characteristic shear resistance steel class 4.6, 4.8, 5.6 and 5.8	V⁰ _{Rķs}	kN			0,6 * A	A _s * f _{uk} (oi	r see tab	le C1)			
Characteristic shear resistance steel class 8.8, stainless steel A2, A4 and HCR, all classe	V⁰ _{Rķs}	kN	0,5 * A _s * f _{uk} (or see table C1)								
Partial factor	Y _{Ms,V}	-	See table C1								
Ductility factor	k ₇	-				1	,0				
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rks}	Nm			1,2 * V	N _{el} * f _{uk} (e	of zie tab	el C1)			
Elastic section modulus	W _{el}	mm³	31	62	109	277	541	935	1387	1874	
Partial safety factor	٧	/ls,V	See table C1								
Concrete pry-out failure											
Factor	k ₈	-				2	.0				
Installation factor	Yinst	-				1	.0				
Concrete edge failure											
Effective anchor length	١ _f	mm	min(h _{ef} ; 12 d _{nom})				min(h _{ef} ;300 m _m)				
Outside diameter of fastener	d _{nom}	mm	8	10	12	16	20	24	27	30	
Installation factor	Yinst	-	1.0								

Revision: 06/03/2024

Page 7 of 8

	00/00/2024										1 49		
	Table C7: Characte	ristic value	s of tens	ion load	ls under	static an	d quasi⊰	static act	tion				
Diameter rei	nforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure				-	-				-	-	-	- -	
Characteristic	tanaian raaiatanaa	N _{Rks}	kN					$A_s x f_{uk}^{1)}$					
Characteristic	lension resistance	N _{Rk,s,eq}	kN		1,0 . A _s x f _{uk} ¹⁾								
Cross section	area	As	mm²	50	79	113	154	201	314	491	616	804	
Partiële veiligh	eidsfaktor	¥Ms,N			-	_	_	1,4 ²⁾	-	-	-	-	
Combined pull	-out and concrete failure												
Characteristic	bond resistance in non-cracked concrete	C20/25											
During	Temperature range I: 40°C to 24°C	Ţrkucr	N/mm ²	10	12	12	12	12	12	11	10	8.5	
concrete	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	7.5	9	9	9	9	9	8.0	7.0	6.0	
	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	6.5	6.0	5.0	4.5	
	Temperature range I: 40°C to 24°C	TRK,ucr	N/mm ²	7.5	8.5	8.5	8.5	8.5				-	
hole	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	5.5	6.5	6.5	6.5	6.5	No	red			
	Temperature range III: 120°C to 72°C	TRKucr	N/mm ²	4.0	5.0	5.0	5.0	5.0					
Characteristic	bond resistance in cracked concrete C20/	25											
Dry and wet concrete	Temperature range I: 40°C to 24°C	TRkucr	N/mm ²	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
	Temperature range III: 120°C to 72°C	TRkucr	N/mm ²	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
Elooded bore	Temperature range I: 40°C to 24°C	TRkucr	N/mm ²	4,0	4,0	5,5	5,5	5,5					
hole	Temperature range II: 80°C to 50°C	TRkucr	N/mm ²	2,5	3,0	4,0	4,0	4,0	No	No performance declared			
	Temperature range III: 120°C to 72°C	TRKucr	N/mm ²	2,0	2,5	3,0	3,0	3,0					
Reduction factor	or Ψ^0_{sus} in cracked and non-cracked concr	ete C20/25											
Dry and wet	Temperature range I: 40°C to 24°C	$\Psi^0_{\ sus}$	-					0,73					
concrete and flooded bore	Temperature range II: 80°C to 50°C	$\Psi^0_{\ sus}$	-					0,62					
hole	Temperature range III: 120°C to 72°C	$\Psi^0_{\ sus}$	-					0,57					
Increasing fact	ors for concrete	Ψ	-					(f _{ck} / 20) ^{0,1}	1				
Characteristic	bond resistance depending on concrete	Trku	_{cr} =				Ψ _c *	Ţ _{Rķucr} (C2	0/25)				
class		Trk,c	₂₇ =				Ψ _c *	T _{Rkcr} (C20	0/25)				
Concrete cone	e failure												
Relevant parar	neter						S	ee Table (C2				
Concrete edge	e failure												
Relevant parar	neter				-		S	ee Table (C2				
Installation fac	tor (dry and wet concrete)	Yin	st	1.0				1	.2				
Installation fac	tor (flooded bore hole)	Yin	st			1,4			No	performa	nce decla	red	

 $^{1)}\,f_{uk}$ shell be taken from the specifications of reinforcing bars

²⁾ In absence of national regulation

Revision: 06/03/2024 Page Page Page Page Page Page Page Page												
Table C8: Characteristi	c values of	shear	loads	under s	tatic an	d quasi	-static a	action				
Diameter reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	V _{Rķs}	kN				0,	50 x A _s x1	: 1) uk				
Cross section area	As	mm²	50	79	113	154	201	314	491	616	804	
Partial factor	¥Ms,∨	-	1,5 ²⁾									
Ductility factor	k ₇	-					1,0					
Steel failure with lever arm												
Characteristic bending moment	M ⁰ _{Rks}	Nm				1,2	2 x W _{el} xf	1) uk				
Elastic section modulus	W _{el}	mm³	50	98	170	269	402	785	1534	2155	3217	
Partial factor	Y _{Ms,∨}		1,5 ²⁾									
Concrete pry-out failure												
Factor	k ₈	-					2.0					
Installation factor	¥inst	-					1,0					
Concrete edge failure	-	-										
Effective length of anchor	۱ _f	mm	min(h _{ef} ; 12 d _{nom}) mir				in(h _{ef} ;300 m _m)					
Effective length of anchor	d _{nom}	mm	8	10	12	14	16	20	25	28	32	
Installation factor	Yinst	-					1.0					

 $^{1)}\,f_{uk}$ shall be taken from the specifications of reinforcing bars

²⁾ In absence of national regulation